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Abstract 
We propose a novel method of functional brain mapping based on functional magnetic 

resonance imaging (fMRI) data. The classical approach is activation-based in that it localizes 

regions that are activated as a whole in one condition as compared to a control condition. 

Our approach, by contrast, is information-based in that it localizes regions whose intrinsic 

activity pattern contains information about the experimental condition, thus addressing a 

more general question. The information in local contiguous activity patterns is mapped out by 

scanning the imaged volume with a spherical “searchlight”, whose contents are analyzed 

multivariately at each location in the brain. 

The idea of distributed representations at the spatial scale accessible to fMRI has recently 

become important in the field of neuroimaging. Our method allows discovery and localization 

of such representations. We maintain the important idea of mapping the brain for functional 

regions at the coarse spatial scale, at which interindividual consistency is to be expected. But 

in contrast to the classical approach, our method is sensitive to information in individually 

unique fine-grained activity patterns as measured by current high-resolution fMRI (≤2 mm 

voxel width) but filtered out by conventional analysis in the interest of noise reduction and 

statistical integration across subjects. 
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Introduction 
Functional brain mapping has evolved from the idea that the brain consists of functionally 

specialized macroscopic regions. This idea goes back to phrenology, but it received solid 

scientific support in studies of cytoarchitecture, which established the notion of cortical area, 

as well as lesion and electrophysiological studies. 

In early neuroimaging experiments using positron emission tomography, brain activity was 

measured at a spatial resolution in the centimeter range. At this resolution the volume 

elements (voxels) were similar in size to the putative functional regions, so only the spatial-

average activity of a region could be studied. In the classical approach to functional brain 

mapping, therefore, the experiment is designed to activate a functional region as a whole. 

The region is then localized by computing an activation statistic for each location of the 

imaging volume and thresholding the resulting statistical map. We refer to this approach as 

activation-based. 

With the advent of fMRI, spatial resolution increased. Standard functional measurements 

were performed using voxel widths of about 4 mm in each dimension. Although a typical 

functional region at this resolution is covered by multiple voxels, standard fMRI analysis to 

this day has remained true to the activation-based approach, in which a region is assumed to 

become active as a whole. This manifests itself in the widespread investigation of the 

spatially averaged activity for regions of interest. Event-related average time courses and bar 

graphs depicting the activity across conditions, for example, reflect a region’s spatially 

averaged activity. 

More importantly, the assumption that functional regions extended across multiple voxels will 

become activated as a whole plays a key role in statistical inference at the level of whole 

maps in several established methods, including the widespread statistical parametric 

mapping (1, 2, 3, see also: 4). The extended-activations assumption motivates the spatial 

smoothing of the data, which is standardly performed. Spatial smoothing accentuates 

extended activations by removing the “salt-and-pepper” fine-structure of the activity patterns, 
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which is treated as noise. As a positive side effect, the resulting reduction of the data’s spatial 

complexity alleviates the multiple-comparisons problem: With smoothing, controlling the 

false-positives rate when performing a statistical test at each location of a functional volume 

will require weaker correction. This entails greater statistical power for detection of extended 

activations. Furthermore, spatial smoothing helps integrate analyses of different subjects 

coregistered in Talairach space (5), where corresponding functional regions can be off by 

many millimeters between subjects. In a typical group analysis, data are spatially smoothed 

by convolution with a Gaussian kernel of 8-mm full width at half maximum (FWHM). 

Although smoothing greatly reduces the information content of the data, the local 

combination of signals it provides is necessary. If smoothing is omitted in a standard 

voxelwise univariate fMRI analysis, statistical sensitivity suffers and fewer voxels are 

detected (Fig. 2). Upon lowering the threshold, the activation maps show salt-and-pepper 

patterns, which are hard to distinguish from noise, inconsistent across subjects and 

impossible to report verbally. Nevertheless these fine-scale patterns of weak effects may 

contain neuroscientifically relevant information. 

The amount of information removed by smoothing fMRI data to the scale of functional regions 

increases with growing spatial resolution of the measurement. Today, a voxel width of 2 mm 

in each dimension is robustly achievable with standard clinical scanners at 3-Tesla field 

strength. Using high magnetic field strengths and advanced methods such as parallel 

imaging (6), fMRI spatial resolution is invading the submillimeter range. Although high-

resolution fMRI maps are somewhat compromised by hemodynamic blurring, distortion and 

vascular artefacts, the mapping of human ocular dominance columns has demonstrated that 

submillimeter neuronal activity patterns are reflected in the fMRI signal (7, 8, 9, 10, see also 

11). We are able to measure activity at a much finer scale than before. This mesoscopic view 

of brain activity will form the centerpiece in bridging the gap between neuroimaging and 

invasive electrophysiological recording. However, the neuroscientific exploitation of this 

information poses new conceptual, experimental and statistical challenges. 
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The activation-based approach discards the high-resolution information fMRI now provides. 

Should fine-scale fMRI activity patterns be thought of in terms of distributed representation? 

How can informative patterns be sensitively detected, distinguishing them from noise of 

similar salt-and-pepper appearance? How can data be related between subjects when the 

available common spaces (e.g. Talairach space, 5) lack precision and, more fundamentally, 

the fine-scale activity patterns, like fingerprints, may be unique to each individual? We 

propose to approach these challenges by abstracting from the actual patterns of activity in a 

local neighborhood and considering the information they convey about the experimental 

condition. 

Information contained in distributed fMRI activity patterns has been analyzed for extended 

predefined regions (12), heuristically chosen discontiguous sets of voxels (13, 14) and global 

patterns (e.g. 15, 16). Here we show how such information can be used to continuously map 

a functional volume. Instead of searching the functional volume for regions whose spatially 

averaged activity changes across conditions (activation-based approach), we search for 

regions whose intrinsic activity pattern changes. Our approach is information-based in that it 

localizes regions containing information about the experimental condition. Information-based 

mapping is a generalization of activation-based mapping in that it is sensitive to both regions 

activated as a whole and regions whose spatial-mean activity stays constant, but whose fine-

grained activity pattern changes with the experimental condition. 

An implementation of information-based functional mapping 
The statistical combination of signals from all voxels within a region can afford a reduction of 

noise and greater statistical power. When the target of the analysis is to find activated 

regions, local signals can be combined by local averaging, i.e. by smoothing of the data. 

Here the target of the analysis is to find informative regions and smoothing would remove 

information in the spatial fine-structure of the data. We therefore combine local signals using 

a multivariate statistic that compares the activity patterns between the conditions. 
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Spherical multivariate searchlight 
In order to obtain a continuous map, in which informative regions are marked, we move a 

spherical multivariate “searchlight” through the measured volume. The searchlight is centered 

on each voxel in turn. A searchlight of 4-mm radius, for example, will comprise 33 voxels of 

2-mm width in each dimension (see Fig. 1D). To combine the signals from all the voxels 

falling into the searchlight, a multivariate effect statistic is computed at each location. For 

each voxel in the volume, the resulting map shows how well the multivariate signal in the 

local spherical neighborhood differentiates the experimental conditions. 

Multivariate effect statistics 
In the present implementation, we focus on information carried by the spatial pattern of 

activity within each region. Furthermore we assume that the activity pattern, though covered 

in noise, is replicable and can, thus, be estimated as the average across trials within each 

condition (or a least-squares fit, for each voxel, of one predictor time course per condition). 

These assumptions restrict the types of activity-pattern information that can be detected, 

excluding information carried by the temporal activity pattern and the shape of the statistical 

distribution of patterns associated with each condition. However, in a first step towards 

generalization of the much more restricted activation-based approach, it seems wise to retain 

some assumptions to improve the stability of the estimates. 

We consider the simple case of two conditions. What statistic should be used to represent 

the difference between the two associated activity patterns within the searchlight? 

 

Average absolute t value. One approach would be to first perform a conventional linear-

regression contrast analysis to obtain a t value for each voxel. The t value represents the 

activity difference between the two conditions in that voxel. One may then average the 

absolute t values within the searchlight to obtain a measure of the difference between 

patterns. Taking the absolute values is crucial here, since opposite effects would cancel out if 

the raw t values were averaged. For instance, the average t value might be zero if activity in 

half the voxels is greater during condition A and activity in the other half greater during 
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condition B – a case in which the activity pattern contains a lot of information about the 

condition. The average absolute t value within the searchlight combines local signals without 

obliterating the spatial fine-structure. However, it does not take the covariance structure of 

the noise into account. 

 

Mahalanobis distance. A natural choice that accounts for noise covariance is the 

Mahalanobis distance, a multivariate generalization of the t value. To obtain a t value, the 

estimated difference between the two activity levels is divided by its estimated variability. To 

obtain the Mahalanobis distance, the estimated difference vector between the two activity 

patterns is normalized by the estimated multivariate noise covariance (Eq. 4). 

 

Mancova-p value. In order to determine whether the local activity pattern within the 

searchlight differs significantly between the two conditions, we perform a standard 

multivariate analysis of covariance (mancova), which provides a p value for the multivariate 

contrast between the conditions. The test involves removing the dimension defined by the 

contrast from the model space, fitting the full and the reduced model and determining the 

extra-sums-of-squares-and-products matrix associated with the contrast. This matrix is 

related to the error sums-of-squares-and-products matrix and inference is performed via 

Wilk’s Λ, Bartlett’s statistic and the χ2 distribution (17). 

 

Mathematical details 
Estimation of spatial activity patterns. To estimate the spatial activity pattern elicited during 

each condition, we fit a linear model to each voxel’s time course by ordinary least squares. 

The model comprises a hemodynamic response predictor (Boynton et al., 1996) for each 

condition and, optionally, additional predictors to model artefactual components such as 

trends, head-motion effects and baseline shifts between measurement runs. For the volume 

as a whole, the linear model can be stated as follows: 
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EXBY += ,      (1) 

where Y is the time-by-voxel data matrix, X is the time-by-predictor design matrix, B is the 

predictor-by-voxel matrix of beta weights, and E is the time-by-voxel matrix of errors. Least-

squares minimization of  leads to ))(( EEdiagsum T

YXXXB TT 1)(ˆ −= ,      (2) 

where B̂  is the predictor-by-voxel matrix of beta estimates. Each row of B̂  that represents 

an experimental condition (as opposed to trend or head motion) contains an estimated spatial 

activity pattern. 

 

Multinormal noise model. For the contents of the searchlight at each position, we assume the 

errors (one spatial pattern of errors for each time point) to have a multinormal distribution in 

the space spanned by the searchlight voxels. At each searchlight position, the error 

covariance matrix Σ  is estimated as , where )/()ˆˆ(ˆ npnEET −=Σ BXYE ˆˆ −=  (with the voxel 

set restricted to the searchlight voxels), n is the number of time points and np is the number 

of predictors in the design matrix including nuisance and confound-mean predictors. For a 

given condition represented by predictor p, the spatial-activity-pattern estimates have a 

multinormal distribution characterized by the covariance matrix 

1

,
)(

−

⋅Σ=Σ
pp

XX T
p .      (3) 

 

Mahalanobis distance. Consider two conditions and their associated spatial-activity-pattern 

estimates  and  within the searchlight. The rows of 1a 2a B̂  corresponding to the two 

conditions provide the estimates  and . The Mahalanobis distance is defined as 1a 2a

Taaaa )(~)( 12
1

12
2 −Σ−=∆ − ,      (4) 

where  is the covariance matrix estimate describing the variability of the activity-pattern 

estimates  and . For 

Σ~

1a 2a Σ~  to describe the variability of both  and , the design should be 1a 2a
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symmetrical with respect to the two conditions. As Eq. 3 shows, Σ~  is a scaled version of the 

noise dispersion matrix Σ . For localization of informative regions, the scaling of ˆ Σ~  is 

irrelevant and simply using  gives a diagnostically equivalent map of Mahalanobis 

distances. 

Σ̂

Validation of the proposed method 

Simulated fMRI data 
The classical activation-based approach is based on the assumption that effects are spatially 

smooth (i.e. in the low spatial-frequency band). In this paper we explore how fMRI activity-

pattern information in any spatial-frequency band can be utilized for the localization of 

functional regions. We therefore simulate effects with no spatial-frequency bias: The effects 

have equal power in all spatial-frequency bands, containing information in their locally 

averaged component as well as in their spatial fine-structure. 

We simulate a time course of three-dimensional volumes as might be obtained in a slow 

event-related fMRI experiment with two conditions. Each condition is associated with a 

spatial pattern of response, which fades in and out according to a linear model of the 

temporal structure of the hemodynamic response. The two spatial patterns are composed of 

values drawn independently from a Gaussian distribution and confined to realistically shaped 

regions of four different sizes (Fig. 1A and 1B), which are embedded in a functional volume. 

The signal data is added to spatiotemporal noise with a realistic degree of correlation 

between adjacent voxels. 

Results of simulation 

In order to assess how well different local descriptive statistics distinguish between voxels 

belonging to informative regions and surrounding noise voxels, we use receiver-operating 

characteristics (ROC, Fig. 1). Since the effect regions are known for the simulations, the 

proportion of correctly detected voxels among all region voxels (the sensitivity) and the 

proportion of correctly rejected voxels among all non-region voxels (the specificity) can be 
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determined for all possible thresholds. An ROC shows the resulting relation between 

sensitivity and specificity (Fig. 1A). As a measure of the diagnosticity of the different local 

statistics, we use the area under the ROC (Fig. 1B and 1C), which reflects to what extent 

high sensitivity and specificity can simultaneously be achieved. More precisely, the area 

under the ROC represents three intuitively meaningful quantities: 1) the average sensitivity 

across all specificities, 2) the average specificity across all sensitivities and 3) the probability 

that upon drawing a random region voxel and a random non-region voxel, the region voxel 

will have the higher effect statistic. If the area under the ROC is 1, the statistic allows perfect 

classification of region and non-region voxels by choice of an appropriate threshold. If the 

area under the ROC is 0.5, then the statistic does not order region and non-region voxels 

better than chance. For the parameter space we tested in our simulation, we observe the 

following. 

 

(1) Information-based mapping using the Mahalanobis distance dominates the other 

techniques. With an appropriate searchlight radius, Mahalanobis mapping (red curves in Fig. 

1A-C) is most sensitive at all specificities for all region sizes, functional-contrast-to-noise 

ratios and degrees of data smoothing. Best detection performance is achieved using the 

intermediate-size searchlight (4-mm radius), except when the regions are large (90, 270 

voxels) and the functional-contrast-to-noise ratio is low. In that case a slightly larger 

searchlight (5-mm radius) yields slightly better diagnosticity. 

 

(2) The activation-based mapping performs worse than the information-based approaches. 

Univariate t mapping (black curves in Fig. 1A-C) performs worse than all information-based 

statistics (colored curves) for all combinations of region size (small or large) and functional 

contrast (high or low) for unsmoothed as well as moderately smoothed data. This is because 

the univariate approach fails to benefit from local spatial combination of signals. 
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(3) Spatial smoothing of the data monotonically degrades diagnosticity of all statistics. For all 

combinations of region size and functional-contrast-to-noise ratio, smoothing degrades 

performance of all statistics tested including the univariate t value. This reflects the fact, that 

effects in our simulation were equally strong in all spatial-frequency bands up to the Nyquist 

limit imposed by voxel size. Data smoothing filters out the high-spatial-frequency component 

of the effect patterns and, thus, reduces the overall effect energy. 

  

(4) The benefit of spatial signal combination within the searchlight is greater for larger 

regions. For univariate mapping, detection is equally poor independent of region size. The 

information-based techniques using a spherical searchlight of 2-mm radius or larger (colored 

curves) perform markedly better than the activation-based univariate mapping (black curves) 

for small regions and the benefits of spatial combination of signals within the searchlight are 

even greater for larger regions. This holds for low and high functional contrast and for all 

searchlight sizes (except the degenerate 1-voxel searchlight, for which both information-

based approaches become diagnostically equivalent to the activation-based univariate t 

mapping). 

 

(5) A searchlight of 4-mm radius yields optimal or near-optimal detection performance. When 

the size of the spherical searchlight is very inappropriate to the size of the region (small 

region scanned with large searchlight or vice versa), detection performance suffers. The 

optimal searchlight radius depends on the shape and size of the regions to be detected. But 

for all region shapes and sizes simulated, the 4-mm searchlight performed optimally or near-

optimally. Detection, thus, is not strongly dependent on an exact match between region and 

searchlight. 

 

(6) Even a small searchlight affords a large increase of detection performance. Spatial signal 

combination with even a 2-mm-radius searchlight comprising only seven voxels drastically 
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improves performance in comparison to univariate t mapping (except for highly smoothed 

data with performance near chance level). 

 

(7) A noise model can improve detection performance. The Mahalanobis distance 

outperforms the average absolute t value for any given searchlight size. This is because the 

Mahalanobis distance is based on a multinormal noise model, which picks up on the realistic 

correlation present in the simulated noise. The noise model helps separate signal from noise. 

 

Simulation details 

A simulated data set was generated by Eq. 1, where X embodies the temporal, B the spatial 

structure of the signal and E the spatiotemporal noise. 

 

Temporal structure of the signal. We simulate a two-condition slow event-related experiment. 

Events last 500 ms and their onsets are separated by 16 s. There are 20 events per 

condition. The entire simulated experiment, thus, lasts 10 min and 40 s. The condition 

sequence is random. The temporal resolution is one volume per 2 s. The time course of the 

fMRI signal associated with each condition is simulated by a linear hemodynamic-response 

model (18) assuming instantaneous rectangular neural responses to each simulated event. 

 

Spatial structure of the signal. The simulated functional volume consists of 9 slices of a size 

of 128 by 128 voxels. The voxels are assumed to be 2 mm wide in each dimension. Along 

one dimension of the slice, we vary the size of the regions in four levels (10, 30, 90, 270 

voxels). Along the other dimension, we vary the functional-contrast-to-noise ratio in four 

levels (0.1, 0.2, 0.3, 0.4). Each slice is accordingly subdivided into 4 by 4 subblocks of 

dimensions 32 by 32 by 9 voxels. Within each subblock representing the smallest and 

second smallest region size, the region shapes are repeated four times, to provide sufficient 

data for the case of small regions. The functional-contrast-to-noise ratio is defined as the 
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spatial average within the effect region of the absolute activity level at the maximum of the 

hemodynamic response divided by the temporal standard deviation of the noise. The shapes 

of the regions (exactly as shown in Fig. 1) were created using a region growing process 

prioritized by a Gaussian random field. In order to obtain realistically compact randomly 

shaped regions whose thickness does not grossly exceed what one might expect of 

functional regions in the human cortex, the region growing was spatially biased by means of 

a disc-shaped pedestal embedded in the Gaussian random field. 

 

Spatiotemporal structure of the noise. To match the correlation found between the residual 

time courses of neighboring voxels in real fMRI data, the noise is generated by slight spatial 

smoothing of spatiotemporal Gaussian white noise with a Gaussian kernel of 2.35-mm 

FWHM. This leads to an adjacent-voxel linear correlation across time of 0.25, approximately 

matching that found in the residuals of our real fMRI data (see below), which were acquired 

at the same resolution as simulated here. 

 

Real fMRI data 
The simulated focally distributed effects were better detected by information-based mapping. 

But do such effects actually occur in fMRI data? In order to test this, we analyzed real fMRI 

data using activation- and information-based techniques. If effects are predominantly spatially 

smooth, then the activation-based approach should find more voxels, because its implicit 

smoothness assumption should make it more sensitive to such effects. If effects with a 

substantial fine-grained component are widespread (as in the simulation), information-based 

mapping should find more voxels, because it is sensitive to effects in all spatial frequency 

bands. 

We performed blood-oxygen-level-dependent (BOLD) fMRI measurements with voxels of a 

size of 2×2×2 mm3 during perception of face and house images. For the information-based 

analysis, we chose a searchlight radius of 4-mm, because this radius yielded the best 
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detection performance in the simulation. For the activation-based analysis, the data were 

spatially smoothed with a spherical kernel of 4-mm radius, in order to exactly match the 

range of spatial combination of signals between the two approaches. (The resulting degree of 

smoothing is comparable to that obtained with the conventional choice of a Gaussian of 8-

mm FWHM.) 

All maps were thresholded such that the average false discovery rate (i.e. the proportion of 

falsely marked voxels among all marked voxels) was 5% or smaller (19, 20). 

Results of fMRI analysis 

We focus on the contrast between activity evoked by images of faces and houses. The 

activation-based map (Fig. 2B) highlights regions more strongly active during face than 

house perception and vice versa. The information-based map (Fig. 2C) highlights regions 

whose activity pattern distinguishes the two categories. Qualitatively, we observe that the 

information-based mapping marks more voxels, highlighting extended swaths of cortex, 

including most of the category-selective regions (21, 22) found by the activation-based 

mapping. A quantitative comparison of the maps (Fig. 2D) shows three sets of voxels: The 

set marked only by information-based mapping (red), the set marked by both information- 

and activation-based mapping (yellow) and the set marked only by activation-based mapping 

(green). We consider the three sets in the order of their size. 

 

 (1) The information-based mapping marks a large number of voxels not marked by the 

activation-based mapping. Of all voxels marked in either map, 45% are marked only in the 

information-based map (red in Fig. 1D-F) on average for the group of 11 subjects analyzed. 

This indicates that there are many regions containing distributed category information, a 

result that is consistent with the findings of Haxby et al. (12, see also 23). The activation-

based mapping does not detect these regions, because the category information is lost when 

the data are smoothed. Note, however, that performing conventional univariate analysis 

without smoothing (Fig. 2A) does not lead to the detection of these regions, either. This is 
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because the effects are weak in single voxels and therefore only detected with local spatial 

combination of signals. 

 

(2) A substantial number of voxels is marked by both mapping techniques. Of all voxels 

marked in either map, 38% are marked in both maps (yellow in Fig. 1D-F) on average for the 

group. The overlap in marked voxels reflects the sensitivity to extended activated regions 

shared by the two approaches. 

 

(3) The activation-based mapping marks a small number of voxels not marked by the 

information-based mapping. Of all voxels marked in either map, 17% are marked only in the 

activation-based map (green in Fig. 1D-F) on average for the group. The effects detected in 

these voxels are likely to be extended homogeneous but weak activations, to which the 

activation-based approach is more sensitive because of its implicit assumption of extended 

activations. That the information-based approach fails to detect these voxels represents the 

cost of broadening the focus of sensitivity to a more general class of effects. 

 

Details on fMRI experiment and analysis 

Stimuli, design and task. Subjects continually fixated while viewing images of faces and 

houses. We used a rapid event-related design with a basic trial duration of 3 s. The stimulus 

sequence was optimized by a method based on a genetic algorithm (24). Each image was 

presented for 400 ms. The basic set of stimuli consisted of four grayscale photographs, 

depicting two faces and two houses. In order to enforce and monitor attentive viewing, we 

asked subjects to perform an anomaly-detection task. They detected subtly altered versions 

of the four original images. Anomalous trials constituted 12% of all trials and were excluded 

from the analysis. Subjects pressed buttons placed underneath their right and left index 

fingers on regular and anomalous trials, respectively. 
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Subjects. Eleven subjects between 18 and 30 years of age participated. All had normal or 

corrected-to-normal vision. Five of them were female, six male. All received information about 

magnetic resonance imaging and gave their informed consent. The experimental techniques 

used in this study and the consent form were approved by the ethical committee CWOM of 

the Academisch Ziekenhuis (university hospital) associated with the Katholieke Universiteit 

Nijmegen (The Netherlands). 

 

Measurements. We measured 15 transversal functional slices with a Siemens Magnetom 

Trio scanner (3 Tesla) using a single-shot gradient-echo echo-planar-imaging sequence. The 

pulse-sequence parameters were as follows: in-plane resolution: 2×2 mm2, slice thickness: 2 

mm (no gap between slices), time between functional volumes: 1500 ms, slice acquisition 

order: interleaved, field of view: 256×256 mm2, acquisition matrix: 128×128, time to echo: 32 

ms, flip angle: 75 deg. The analysis for each subject is based on one measurement run 

lasting 14.8 min. Imaging was performed at the Donders Centre for Cognitive Neuroimaging 

(Nijmegen, The Netherlands). 

 

Preprocessing. The fMRI data sets were subjected to a series of preprocessing operations: 

1) slice-scan-time correction, 2) head-motion correction, 3) removal of temporal drifts of 

frequencies below 0.009 Hz, 4) selection of brain voxels for the Benjamini-and-Hochberg 

procedure (19, 20). Steps 1-3 were performed using the BrainVoyager 2000 software 

package (version 4.8). Step 4 was performed using custom software developed in Matlab. 

The brain mask (matching the anatomical background shown in Fig. 2) was computed by 

thresholding a smoothed version of the pseudoanatomical volume provided by the temporal 

average of the functional volumes. 

 

Conventional aspects of the analyses. In both, the activation- and the information-based 

analysis, we assumed an instantaneous rectangular neural response to the stimuli and 

obtained hemodynamic response predictors using a linear model (18). The design matrix 
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included these predictors along with six head-motion-parameter time courses. The activation-

based analysis consisted in standard univariate linear regression and contrast analysis. All 

activation- and information-based analyses were performed using custom software 

developed in Matlab. 

Discussion 
We propose information-based functional brain mapping, an alternative to the classical 

activation-based approach. The core idea is to localize functional regions carrying a particular 

type of information by scanning the entire volume with a multivariate searchlight. By 

simulation, we show that information-based mapping is more sensitive to focally distributed 

effects with equal power in all spatial-frequency bands than activation-based mapping. By 

experiment, we show that focally distributed effects better detected by information-based 

mapping actually occur in fMRI data. 

What experiments are amenable to information-based mapping? 
The methods described here can be applied in the context of any fMRI experiment. Block- as 

well as slow and rapid event-related designs can be analyzed by the methods defined. 

However, the added value of information-based analysis depends on the neuroscientific 

questions to be addressed and the experimental design chosen. If the experiment is 

designed to activate a particular functional region as a whole, an activation-based mapping 

may be conceptually more natural as well as a more sensitive means of localizing the region. 

By contrast, experiments that target focally distributed activity patterns, often interpreted as 

serving a representational function in the brain, are naturally suited for information-based 

mapping. The technique is not restricted to vision or perception. It can be applied in all 

domains including motor control and higher cognitive function. 

Information theory and the generality of multivariate effect measures 
Since the method targets activity-pattern information, it is natural to use information-theoretic 

measures to quantify effects. For example, one can use an estimate of the mutual 
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information between the experimental conditions and the concomitant local activity patterns. 

We do not present mutual information estimates in our analysis here, because we are 

primarily concerned with the localization of informative regions. 

Inspired by the generality of the concept of information, the method may be extended in the 

future to detect differences between spatiotemporal activity patterns and between other 

aspects of the pattern distributions than their centroids. However, broadening the focus of an 

analysis to a more general class of effects comes at a cost in sensitivity. We feel that the 

modest generalization of the classical activation-based approach proposed here is realistic 

for fMRI data and well worth its cost. 

Spherical or cortex-patch searchlight  
Information-based mapping statistically combines local signals within a multivariate 

searchlight. It is, thus, most sensitive to information in contiguous macroscopic regions well 

sampled by the searchlight. For optimal joint sampling of informative voxels, the radius of the 

spherical searchlight should reflect the size and compactness of the regions. However, our 

simulation shows that a radius of 4 mm yields near-optimal performance for small as well as 

large regions of realistic shape. In localizing cortical information, using an explicit 

representation of each subject’s cortical sheet (25, 26, 27) and replacing the spherical 

searchlight by a cortex patch promises to improve the joint sampling of informative signals 

and enhance sensitivity. 

Group analysis 
A group-analytical extension of the information-based approach to functional mapping has 

the potential to address an important challenge functional brain mapping is currently faced 

with: While human fMRI already operates at a resolution of 1-2 mm, the spatial reference 

frames relating locations in different individual brains have a much lower spatial precision. 

Information-based group analysis should therefore follow a two-scale approach. At the fine 

spatial scale of millimeters, activity patterns are assumed to be unique to each individual and 

therefore analyzed separately for each subject as described here. At the coarse spatial scale 
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of centimeters, single-subject multivariate effect statistics are combined to increase statistical 

power and obtain a group-statistical summary of the individual results. 
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Figure legends 
 

Fig. 1: Simulated fMRI data 

A-C show the performance of activation- (black lines) and information-based mapping 

(colored lines) at detecting focally distributed effects (for color coding, see D). A shows ROCs 

for the case of unsmoothed data. B shows the effect of spatial smoothing of the data. The 

vertical axis represents the area under the ROC. For the included case of no smoothing (i.e. 

FWHM=0), the areas under the ROC (marked as circles) correspond to the ROCs shown in 

A. Note that smoothing degrades performance for all techniques. For the crucial case of 

unsmoothed data, C summarizes the essential results by visually relating the detection 

performances afforded by the different techniques for small and large regions and low and 

high functional-contrast-to-noise ratio. The searchlights yielding optimal performance in each 

case are shown in gray (4- or 5-mm radius). The circles in C replicate the circles in B 

reflecting the areas under the ROCs shown in A. In A and B, the line thickness measured 

vertically is 2 standard errors of the mean obtained by repeating the simulations and 

analyses 40 times with fresh noise. The shapes of the regions shown in green in A-C are 

exactly those used in the simulations. D illustrates the color coding in A-C and shows the 

searchlights used. 
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Fig. 2: Real fMRI data 

Comparison of activation- and information-based mapping techniques in application to real 

fMRI data. A-C show different analyses of a single subject’s data. A and B show univariate 

two-sided t maps contrasting the strength of activity during perception of face and house 

images. The color scale linearly reflects the t value for the contrast between faces and 

houses (see color bar) for voxels above the FDR threshold. Yellow and cyan voxels have 

absolute t values close to the maximum absolute t value found in the map. A shows the t 

map for unsmoothed data, B for smoothed data. Note that smoothing increases the number 

of voxels marked. C shows the information-based map of p values from mancova performed 

at each location for the contents of a spherical searchlight. The color scale linearly reflects 

the p value (see color bar). D shows a direct comparison of the voxel sets marked by 

activation- (green) and information-based (red) analyses in this subject. Voxels marked by 

both techniques are shown in yellow. The sizes of these sets of voxels are related to each 

other in the left panel of E for this subject. The analysis has been performed with similar 

results for each of 11 subjects. The voxel set analysis for the group is shown in E (middle and 

right). F replicates the comparison map shown in D with one modification. Instead of using 

the FDR threshold obtained separately for each map, the FDR threshold obtained for the 

activation-based map (p=0.0013) has been used for both maps. As a result less voxels are 

marked in the information-based map and the expected FDR is lower than 5%. However, this 

does not entail a substantial qualitative change to the information-based map or the 

comparison. The slices shown in A-D and F, are slices 4, 6, 8, 10 and 12 (in anatomically 

ascending order from left to right) of 15 axial occipito-temporal slices acquired. The right side 

of each slice image represents the right hemisphere. 
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